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AlJstrad-The boundary perturbation method developed in Part I is applied to investigate asym­
metric radiation due to oscillating dislocations in solids. For an eccentrically located dislocation in
a circular cylinder, the response is found to be in agreement with the exact solution. The response
10 dislocations oscillating about the centre of an elliptic cylinder is obtained and reveals a frequency
spectrum markedly different from that of a circular cylinder.

I. INTRODUCTION

In Part I of this paper[I], general expressions for the application of the boundary per­
turbation method (BPM) have been derived for two classes of asymmetric problems:
eccentric problems within a circular domain and elliptic problems. Making use of these
expressions, we apply the BPM to two dynamic problems.

We consider first, in Section 2, the radiation due to a screw dislocation oscillating
about an eccentric point of a circular cylinder. An exact solution to this problem was
recently given by the authors[2]. The present BPM solution is seen to be much simpler and
describes a behaviourwhich is in agreement with the exact results for moderate eccentricities.

In Section 3, we consider the radiation due to a screw dislocation oscillating about the
centre of a cylinder having an elliptic cross-section. The exact solution to this problem
would require a complex mathematical treatment involving Mathieu functions for which
numerical evaluations of the resonance frequencies represents a considerable task.
However, application of the BPM to this problem leads to a simple solution, providing
readily the resonant frequencies which are of major importance, for example, in the
interpretation of acoustic emission signals.

2. ECCENTRIC OSCILLATING SCREW DISLOCATION IN A CIRCULAR CYLINDER

2.1. Formulation ofthe problem and the aXisymmetric case
We consider the radiation from a screw dislocation in an elastic cylinder of radius

r =a which oscillates radially with amplitude q and frequency Cl) about an equilibrium
position, Xo = fla, eccentric to the axis of symmetry (Figs I and 2). Hence, the coordinate
position of the dislocation at any time t is

~J'(t) =0; Iql!a ~ fl· (2.1)

t Part of this work was performed by the first author at the Laboratoire de Mecanique des Solides, Ecole
Polytcchniquc. Palaiseau. France. with the support ofCNRS.
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Fig. I. Eccentric screw dislocation.

Co

The oscillating screw dislocation may be described by a displacement field

u, = U9 = 0, u, =u(r, 8) e;I»' (2.2)

with u(r, 8) satisfying the equation of motion

where

x= walC,

represents a dimensionless wave number and

p = ria,

(2.3)

(2.4a)

(2.4b)

a dimensionless radial coordinate. In the above C, is the wave speed of S-waves in the
cylinder.

Eshelby has shown[3, 4] that for the displacement field defined by eqn (2.2), the
oscillating dislocation may be prescribed by specifying the singularity

Limu = 2
bq

sin 8::g TCap
(2.5)

on the displacement u, where b represents the Burgers vector. The remaining boundary

'I

Fig. 2. Geometry of eccentric problem.
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condition on the traction-free surface Co becomes, for the given displacement field,

aul = 0an Co '
(2.6)

where n is the normal to Co.
The problem thus consists of finding a solution to the Helmholtz equation, eqn (2.3),

subject to the boundary condition ofeqn (2.6), and such that u satisfy the singularity given
by eqn (2.5). We note, in passing, that eqn (2.3), being a homogeneous equation, the
"forcing term" (as appears in eqn (I, 2.4a»t is instead represented by the singularity as
p-+O.

Now, proceeding with the BPM we let

3

u(p,O) = L yfu(J) (p, 0).
j-O

(2.7)

Following the development of Sections 2 and 3 of Part I, substitution of eqn (2.7) in
(2.3) leads to a set ofhomogeneous equations

j =0, 1,2,3, (2.8)

subject to the boundary conditions corresponding to eqn (2.6). In addition, we set

Lim u(O) =!!!L sin 0,
p-O 21tpa
8-0

(2.9)

that is, we let thej = 0 term satisfy the singularity. It follows then that for allj ~ 1, u(J) as
p -+ 0 must remain finite. Now, the solution for the j =0 case, which corresponds to a
dislocation oscillating about the axis of symmetry, has been given by Beltzer[5]; viz.

where

AI = bqXY'tl4aJ~,

B) = bqX/4a.

(2.10)

(2.11 )~

In the above J" and Y" are the Bessel functions of order n of the first and second kind,
respectively. We observe that the j =0 case is O-dependent.

2.2. Perturbed solutions
For all cases j ~ 1, finite solutions of the Helmholtz equation, eqn (2.8), are of the

form

co

u(j) (P, 0) = L yCjlJ,,('Xp) sin nO.
,,-I

(2.12)

The constants "I~\ evaluated from the boundary conditions corresponding to eqn (2.6), are

t References to equations appearing in Part I are indicated, e.g. by eqn (I, 2.4&), etc.
t For simplicity ofnotation, here and below, Bessel functions. appearing with no argument are evaluated at

x; Le. J•• J.(x). etc. Furthermore. both here and below, derivatives of Bessel functions with respect to an
argument are denoted by primes; e.g. J. - dJ.(x)/dX. J: = d2J.(X)/dX2

, etc.
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obtained for each case j = 1,2,3, by making use of the derived general expressions, eqn
(I, 3.15).

We proceed to solve sequentially the set of problems j = 1,2,3. For the case j = I,
upon setting to zero the coefficient of the '1 term appearing in eqn (I, 3.15), the required
condition becomes explicitly (with f == u)

(2.13)

and upon substituting the solution for u(O), as given in eqn (2.10), we obtain

Now, it is seen from eqn (2.12), that the boundary condition is satisfied if

iP = ~2 [X(AtJj+BtYj) + i(AtJt+BtYt)].

(2.14)

(2.15)

n #2.

For convenience we define the operator quantity

where A t and B t are treated as constants. Hence,

k = 0,2,3, ...• (2.l6)t

(2.17)

Proceeding to the j = 2 problem, the general required boundary condition on U(2) at
the boundary p = 1 is obtained by setting to zero the coefficient of the 11 2 term appearing
in eqn (I, 3.15).

Letting

and noting that

I
Q(X) = XL 2 + - L o,

X

aku(l)I - Q(X) ( I )k dkJ2(X) • 2(J
01' '-a .- 2J'( ) Xa d k sm

(P-l) 2 X X

(2.18a)

(2.18b)

the boundary condition on u(2) can be written upon making appropriate substitutions, in
the form

(2.19)

tNote that L 1 = 0 since cqn (2.11) satisfies the boundary condition for thej = 0 case; viz. U~)I'.1 = o.
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where

From the general solution,

00

U(2l = L 'l'~2l IN(1.p) sin nO,
N-I

(2.20a)

(2.20b)

(2.21)

we observe, by matching like terms, that the boundary condition, eqn (2.19), is satisfied if

(a) F'- M)
'l' - 21.1'1'

(b) ~2l _ M 3
'l' - 21.1'3'

(c) 'l'~2l = 0, n::/< 1 or 3.

(2.22)

Hence U(2l becomes

(2.23)

The j = 3 solution is obtained similarly upon setting to zero the coefficient of the ,,3
term in eqn (I, 3.15) to obtain the explicit boundary condition and then comparing like
terms. Omitting all tedious details of the algebraic manipulations, we present the results:

(2.24a)

where

(2.25a, b)

with

and

Of particular importance is an identification of resonance frequencies. From eqns
(2.10)and(2.ll)wenotethat theliOlterm possesses resonances given by the roots ofJ')(1.) = O.
Equation (2.17) reveals resonances in iii' when J2(1.) = 0, while eqns (2.21) and (2.22) and

SAS 22: ll-C



1194 R. PARr-lOS AND A. 1. BELTZER

(2.24) and (2.25) reveal additional resonances in IP and 1/1) given by the roots ofJ~(xJ = 0 for
n = 3and 4, respectively. Since the displacement is a linear combination ofuU), we observe that
the third order BPM reveals resonances in u due to the roots of J~(x.) = 0, n = 1,2,3,4. It is
reasonable to surmise therefore, that higher-order schemes would lead to resonant frequencies
given by the roots of

J~(xJ = 0, n = 1,2,3, ... ,00. (2.27)

Indeed this is precisely the results obtained from the exact solution, as given by the
authors[2], where the resonant frequencies have been tabulated numerically. It is of interest
to observe, however, that the BPM as developed here, leads to a much simpler solution
requiring only a solution to a general homogeneous equation and the matching of simple
boundary conditions. Moreover, the BPM solution presented here has the distinct capability
of predicting the exact analytic pattern of resonant frequencies.

3. OSCILLATING SCREW DISLOCATION IN AN ELLIPTIC CYLINDER

3.1. Formulation and perturbation of the problem
We consider a screw dislocation oscillating with amplitudeq and frequency w along the

semimajor axis and about the centre of an elastic elliptical cylinder having shear modulus
J1. and density PO' The ellipticity, c, of the cylinder is given as c = a/b-I (Figs 3 and 4).
The coordinate position of the dislocation thus, at any time t, is

~y(t) = 0; Iql «a. (3.1)

The basic governing equations of the present problem are essentially the same as those
of the previous problem given in Section 2 (noting, however, that in accordance with the
development in Part I, 9 must be replaced by the coordinate l/J). The exception is the
boundary condition of eqn (2.6) which must be replaced by

aul = o.an c,
(3.2)

Consequently, the governing equations of the present problem are eqns (2.2)-(2.5)
(with 9 replaced by l/J) and eqn (3.2) above.

For the ellipse considered here, we let

2

u(p, l/J) = L eluU)(p, l/J)
i- 0

Fig. 3. Screw dislocation in elliptic cylinder.

Ce

(3.3)
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Fig. 4. Geometry of elliptic problem.

with p = ria. Substituting in eqn (2.3), we obtain the set of homogeneous equations given
byeqn (2.8) for j = 0, 1,2 where as before u(U) behaves as p - 0 according to the singularity
of eqn (2.9) with 0 -I{I. We note again that the j = 0 solution represents the case of the
screwdislocation oscillating about the centre ofacircular rod as given byeqns(2.10)and (2.11)
with 0 replaced by I{I.

Substituting eqn (3.3) in eqn (3.2) and using eqn (I, 4.20a) together with the defined
quantities given in eqns (I, A.5), the boundary conditions on uUJlcoforj = 1 and 2 become:

(2)1 [I (. 2.1.)2 0 (2 . 2.1. 2.1.) . 2.1. 0
2

. 4,1.
U.r r-a = 2 sm ." U.r - 2 sm .,,-cos ." sm ." U.rr -"2 sm ." U,m

I J(~+sin 21{1 sin 21{1 u.r ; - 40 sin 41{1 u.;

[
1 J(lll+ a sin 21{1 U.rr - - sin 21{1 u..; ,
o r-a

(3.4)

(3.5)

where [.. .]W above denote the combination of derivatives of uW•

Noting that the j = 0 solution satisfies the singularity at p = 0, finite solutions to the
modified eqn (2.8) for j > 0 are

00

uU)(p,l{I) = L j~)Jn('X.P) sin nl{l,
n-I

(3.6)

where fj) are constants to be evaluated by the boundary conditions, eqns (3.4) and (3.5). For
thecasej = I, substitution ofeqn (3.6) in eqn (3.4) leads, after considerable manipulation, and
upon matching like terms in the resulting relation, to the following:

with

(3.7)

In the above,

f~J) =0, n ~·1,3. (3.8)

(3.9a)



R. I'ARl'ES ANt) A. I. UELTZER

(3.9b)

where L k is defined by eqn (2.16).
The second order perturbation u(2) may be obtained similarly. Substituting eqns (2.10)

(with () -I-l/J), (3.7) and (3.6), together with the defined quuntities ofeqns (J.g) and (3.lJ) in the
boundary condition, eqn (3.5), taking the appropriate derivatives and making repeated use of
the standard identity

cos al/J sin pl/J = (I /2)[sin (a +P)t{I +sin (P - a)l/J]

leads, after considerable manipulation, to the following result:

(3.10)

y~2l = 0,

from which,

n :F 1,3,5, (3.11 )

The coefficients y~2l (n = 1,3,5) are given by

Combining now the results for the u(}\ we obtain from eqn (3.3)

(3.13a)

(3.13b)

(3.13c)

u(p, l/J) = [A IJ,(XP)+B 1Y.(Xp)] sin l/J+e[y\llJ.(Xp) sin t{I+y}llJ3(Xp) sin 3"']

+e2[WlJ1(Xp) sin t{I+WlJ3(Xp) sin 3",+y~2lJ5(XP) sin 5t{1). (3.14)

3.2. Numerical results and discussion
According to the definitions of A" B" y~l), y~2l given above, we observe that for a

screw dislocation oscillating in an elliptic cylinder, the second-order aPM reveals that
resonances in the displacement u will occur at frequencies Xdefined by the roots of

J~(X) = 0, n = 1,3,5. (3.15)

We note additionally that the first-order scheme reveals resonances only for n = I and
3. On the other hand, we may surmise that using higher-order schemes, resonant frequencies
Xwill be found to occur for all odd n values satisfying J~(X) = 0. Thus, observing that for
the case of a circular cylinder the sole resonances are given by the roots of 1'1 (X) = 0, we
may conclude that the effect of ellipticity is to introduce additional resonance for values
n =3,5,7, ... , thus radically changing the resonant response of the body.

For convenience, ordered resonance frequencies Xn.. obtained from [6] are presented
in Table 1 (where nand s represent the sth root ofJ~(xJ = 0) for values X :s;; 10.

It is noted that within this range of X, three resonance frequencies, XI .. (s = 1,2,3)
exist in the case ofa circular cylinder; the ellipticity gives rise to four additional frequencies.

In Figs 5 and 6 the normalized displacement, u· = ua/bq, at points defined by '" = 45S

and 90° on the boundary C. is presented as a function of Xfor elliptic cylinders with values
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TlIblc I. Ordered resonant frequencies x..,' 0 < X< 10

n s x".. n s x"..

I I 1.84118 3 2 8.01524
3 I 4.20119 I 3 8.53632
I 2 5.33144 7 I 8.57784
5 1 6.41562

l: =0.2 and 0.4. within the range X :,;;; 8. The response for the circular cylinder (l: = 0) is
also presented for comparison. In Fig. 5, for the resonance response at a boundary point
defined by '" = 45°, we observe that the ellipticity has a radical effect upon the resonance
response. For the resonance response for a boundary point at the semiminor axis, '" = 90°,
shown in Fig. 6, we observe the same resonances, although it is seen that the displacement
pattern is considerably different from that of Fig. 5. A similar sensitivity to position was
also noted in the case of the circular cylinder[2].

From Figs 5 and 6, we notc that the curves are quite flat for low frequency values,
X < I, and therefore differ by little from values as X-+ 0; hence, an approximate response
for low frequencies can be obtained by taking the limit as X -+ O. Using the series rep­
resentations of the Bessel functions, the quantities defined byeqns (2.11) and (2.16) are
seen to tend to the following limits:

limA )bqla = I/nx,
x... 0

Lim Lobqla = lin,x... 0

(3.16)

Substituting in eqns (3.8), (3.9) and (3.13), the limits of j:/), j = 1,2, are then readily
obtained. Upon performing the detailed manipulations and combining eqn (3.14) in powers

8.

6.

*' uoU =-
bq

4.

2.

O.

-2.

-4.

-6.

-8.

E'=o-- c; =0.2 _._.- c; =0.4

Fig. 5. Boundary displacement, resonance response, '" ... 45°.



lIn R. PARNES AND A. I. BELTZER

6.

* uOU ,,-
bq

4.

2.

-2.

-4.

-6.

.'
l'.'
I'· ,
\ '·,
\ '· ,
\ '· ,
\' 'I· , ,
\ \ II
• \,1
\ -,
• I
\ .
. I
\ .
'J

E""O -- E" a O.2 _._,- E""O.4

Fig. 6. Boundary displacement, resonance response, '" = 90°.

of £, the displacement u(p, "') is observed to tend to the limit as follows:

Lim
b
ua

=-2
1

{(I/P+P) sin'" + ~2 (sin "'_p2 sin 3"')£
x... 0 q 7t

+ ~(sin '" _ 3;2 sin 3'" + ~4 sin 5'"}2} (3.17)

from which we recover the singularity as P -+ 0, given by eqn (2.9) with (J -+ "'. Equation
(3.17) thus represents the low frequency displacement field in an elliptic section resulting
from a screw dislocation at the centre. The variation of the displacement along the boundary
C. may then be obtained as a function of the coordinate "', from the derived expression for
P. = rial C,' eqns (I, 4.8) and (I, 4.9b). Substitution in eqn (3.17) leads, upon combining

0.5.---...,.----r--.----...,.----r----,--......----r----,
u* • .!!.!...

bq

604020 80

Ij!IOEG. )

Fig. 7. Variation oflow frequency boundary displacement, dependence on ellipticity.
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terms appropriately, to the following:

~~ttt ~: Ie. = 2
1,J2 sin t/J + ~ (sin t/J -sin 3t/J)e - s~~: (33 + 16 cos 2t/J -17 cos 4t/J)e

2J.
(3.18)

It is of interest to note that at t/J = 90°, the coefficient of e2 vanishes identically. The
static variation of u on C. is shown in Fig. 7 for several values of the ellipticity e in the
range 0 ~ t/J ~ nf2. (Values in the other quadrants follow from the symmetricfantisymmetric
properties of the solution.)

As in the previous case, we observe that the BPM has led to a relatively simple treatment
of a rather complex problem. It is clear that the exact solution to this problem would lead
to expressions involving Mathieu functions for which numerical results, such as presented
in Figs 5-7, would be difficult to obtain. The boundary perturbation method thus provides
an alternative treatment which permits a direct identification of resonant frequencies and
description of the behaviour of asymmetric systems.
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